SHORT NOTES

X /L X /L N
e £/ £0)-2
=0 \? i=0 \? 1’\’2

then the average row a weight of the extended matrix is
M+ Z(K+ 1)
No+ Z

W,

Treating this as a function of the number of rows and
differentiating, we get
’

r

No(K+1)— N,
(N + Z)?

From this we see that the average row @ weight increases
more rapidly when we add the first few rows of ¢ weight
K41 and less rapidly as we approach matrix Ax.;. The
result then follows since any M X L matrix is intermedi-
ate between 4k and 4 x4, for some K.

Lemma 6:

K+o /T,
> <> < 2LEE+e/L) - for K < [L/3] and L > 2.
i=0 \?

Proof: 1t is well known that this bound is true for
conventional summations, i.e., 6=0, so we need only
show that it is true for 0<o <1 where the fractional
summation is as defined above. To this end we consider
the right and left sides of the inequality to be functions

of 0. Between the points K and K +1, Zﬁ%" (i) has the

constant slope (k) and 222 &E+e/L) hag slope

(%41 can be rewritten as (¥)-L—K/K+1 and we ob-
serve that in the area of interest, K< [L/3] and L>2,
the function 2EH(K+9/L) has the greater slope. Thus it is
not possible for the value of D <4 (F) to overtake the
value of 2LH(E+e/D) hetween the points K and K +1.

We are now able to prove the theorem.

. Proof: We first show that a set of J/ distinct output
sequences, each of which has fractional a weight not

greater than §,, must have some set of L consecutive -

positions in which the fractional ¢ weight of the cor-
responding M X L matrix is less than d,. Let B be the
M X T matrix whose rows are periods of the output se-
quences of fractional ¢ weight 8, or less. We consider
M XL submatrices of consecutive columns, which we
call frames, and we note that there are 7 distinct frames
since B may be considered to wrap around in cylindrical
fashion. We let N.(L;) denote the a weight of the 7th
frame and N,(B) the a weight of B. Then, since each
b; of B appears in exactly L frames, we have

T

L-Nu(B) = 2 Nu(Ly).

=1

Observing that N,(B)/M is the average row a weight of
B and denoting the a@ weight of the frame with the least
number of a’s by N,(Lmin), we obtain
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i No(Ly)

L-N.(B = T No(Lmin
B _ = 5 L Nallmin)

M T M

L-§T >

From this we conclude that

Na Lmi
NolLow)
LM

Hence B contains at least one M XL submatrix with
average fractional ¢ weight less than or equal to §,, and
the proof then follows immediately from Lemmas 1
and 6.
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Threshold Elements
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Abstract—A new approach for the realization of multithreshold
threshold elements is presented. The procedure is based on the fact
that the excitations at contradictory vertices of the switching function
must be unequal. The weights of the multithreshold element, in
general, satisfy simple relations of the form U-W=0, where
U=(w, us, -, ) and W=(w, wy - -, w,) such that u;
€{1,0,-1},i=1,2, - - - n,and WE I

Comparison of the excitations E(X;)=W- X, and E(X))=W-X;
at TRUE and FALSE vertices X; and X;, respectively, for all specified
vertices result in some inequalities of the form U- W><0. Subsets of
the remaining set of weight expressions U- W that are compatible are
then determined, i.e., no linear combination of some or all of these
expressions results in an expression U;- W such that U;- W0 and
independent of each other. Each expression of each of these subsets
is then equated to zero, and simple relations between weights are
established. These are then used to find the weights vectors W’s.
The threshold vector T for each W is next established. From the set
of weight-threshold vectors (W, T) the desired solution is deter-
mined by some minimality criterion. An example has been worked
out by hand and an algorithm is given for systematic synthesis pro-
cedure.

The method is applicable directly to the truth table or decimal
number representation of the switching function, and a large number
of permutation and negation of input variables [1], [2] is not neces-
sary for finding the solution. Such processing of the switching func-
tion as decomposition and reconstruction [3] is also not necessary.
The method, however, involves some amount of computation and
efforts are in progress to program the algorithm.

Index Terms—Compatibility, multithreshold threshold elements,
simple implication, weight expressions and inequalities.
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I. INTRODUCTION

A multithreshold threshold element (MTTE) is de-
fined by its weight-threshold vector (W, T), where the
weight vector W= (w;, w,, - -, w,) consists of an
ordered set of # real numbers, called weights, cor-
responding to the % input wvariables xiE{O, 1},
t=1, 2, ..., m, constituting the input vector X
= (%1, X3, * + +, %) Of the switching function F(X) re-
alized by the MTTE; and the threshold vector T

=(T1, Ty, + - -, Tx) is an ordered set of k real numbers,
called thresholds. The linear weighted sum
W-X =D wa
i=1

is called the excitation and is represented as E(X). The
decision process of the MTTE can be expressed as
follows:
F(X) =3, if E(X) > T

or if sz Z E(X) Z T2f+1

, otherwise, where z is the complement of 2

and z € {0, 1}

F(X) =

DU

j=1?273;"'
T; € {T1, Ty, -
Tj>Tj+1.

',Tk}

A number of approaches have been made recently for
the synthesis of multithreshold threshold elements.
Haring [1] developed two algorithms, the first based on
the “run-measure” minimization [4] by permuting
and/or negating the weights assigned to the variables in
the truth table of the given switching function, and the
second based on single-threshold realizability conditions
of the component subfunctions into which the given
function is decomposed. The first algorithm requires 7 2*
permutations and/or negations of the weights assigned
to variables to minimize the run measure of the given
function. Even then a minimal solution with the smal-
lest number of thresholds and the minimum sum of
magnitudes of weights is not guaranteed. The second
algorithm gives a minimal solution, but due to diffi-
culties of testing and decomposition it is not useful for
£>2 and #>6. The tabular method of Haring and
Ohori [5] is based on the Rademacher-Walsh coeffi-
cients of the function and its classification into one of
221 equivalence classes (for a four-variable function).
The method is applicable for » <4 and minimality is not
guaranteed. The algorithm developed by Necula [2]
uses the run-measure minimization approach, but takes
symmetry conditions into consideration and shows that
only 7127~ tests are sufficient. Mow and Fu [6] based
their approach for MTTE synthesis on resolving con-
tradictory pairs of vertices by using incremental weights.

IEEE TRANSACTIONS ON COMPUTERS, AUGUST 1972

The synthesis procedure presented by Haring and
Diephuis [3] uses a decomposition and reconstruction
technique to realize the given function.

This note is a generalization and extension of the
work done by Paldi and Sheng [7], and it presents a
technique for determining sets of independent relations
between the weights of the MTTE that do not contra-
dict the separation of the excitation of TRUE and FALSE
vertices. A set of weight vectors is then determined
using minimal integral values, and the threshold vectors
T for each of them are computed. The weight-threshold
vector (W, T) that satisfies the minimality criteria is
then selected.

The process involves some amount of computation,
but is systematic and no preprocessing like decomposi-
tion and reconstruction is necessary.

II. StMPLE WEIGHT EXPRESSIONS AND
WEIGHT RELATIONS

Let
u) € 10,1, —1fn

U= (u1, Ugy *
and
Gw) AU W 1)

be a simple linear expression of the weights of a multi-
threshold threshold element. Such equalities or inequal-
ities as

Glw) =0
or
G(w) # 0 @)

are defined as simple linear relalions between the weights.
It is obvious that complimentary simple weight ex-

pressions, i.e., weight expressions G,(w) and G,(w) that

satisfy '

G.(w) + Go(w) = (U, + Us) W=0W=20

where 0 is the null vector, are not distinct in the sense
that they do not generate different simple weight rela-
tions. Thus if G.(w)=0, Gy(w)= —G.(w)=0; and if
Go(w) #0, Gy(w) = — G.(w) #0.

Two simple weight expressions are called distinct if
they give rise to different simple weight relations.
Weight expressions that have coefficients different from
{1, 0, —1 } are called complex weight expressions.

For an n-variable problem, the total number of non-
trivial excitations is (2" —1). The set of vectors { U} is
of order 3" Eliminating the null vector 8 and considering
that for every vector U,E [{ U} —8] there is another
vector U,& [{ U} —8] such that U, U, and U,+ U, =6;
the total number of distinct simple expressions reduces to

@ —1)
-

N = 3)
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Example 1

All the distinct simple weight expressions for a three-
variable problem can be expressed by the following col-
umn matrix:

0 0 17

0 1 0

1 0 0

0 1 1

1 0 1

1 1 0 W,
[Ul'w=]0 1-—1 wy | . (4)

1 0 —1 W3

1 -1 0

1 —1 —1

1 -1 1

11—t

1 1 1

In (4), each dot product U-W corresponds to a simple
distinct weight expression.

The distinction between an excitation E(X) at a
vertex X and a simple weight expression G(w) is that
while E(X) is a linear combination of the weights with
coefficients (1, 0), the simple weight expression G(w) is
a linear combination of the weights with coefficients
1,0, and —1. Thus

{EX)} C {G@)}. (5)

Now, consider a TRUE vertex X; and a set of FALSE
vertices X1, X,s, - - -, Xj,. Since the excitations of a
TRUE and a FALSE vertex must be different, we have

E(Xl) # E(ka)’ k= 13 2’ o, S (6)
or
E(X;) — E(X;r) = Gi(w) # 0. (7

Thus corresponding to the TRUE vertex X, and the
FALSE vertices Xj;, Xjs, « - -, X we have s distinct
simple weight relations (inequalities) of the form (7).
Let there be X, X5, + - -, X, a total of » TRUE ver-
tices, then inequalities of the form (7) can be generated
for each of » TRUE vertices and all the s FALSE vertices,
but not all s inequalities are distinct. Thus the switch-
ing function being realized constrains a set of ¢<r-s
simple weight expressions into inequalities. This leaves
us with (N —g¢) simple weight expressions, some or all
of which may be equated to zero.

Example 2

Consider the three-variable example:

F(X)s = 2.3,5,7.

915

From the comparison of excitations we obtain the fol-
lowing inequalities:

w; #0 wy + wy # 0 W) — Wy — w3 # 0

wy #Z 0 w; + wz #0 Wy — wy — w3 0

ws # 0 wy + w3 % 0 wy + we+ wy = 0. (8)
wy — wy Z0
wy — wy #0

This leaves us with only (13—11) =2 simple weight ex-
pressions that we may equate to zero giving us the fol-
lowing equality relations:

Wy — We = 0 W1 = We

or 9)
Wy — wy — wy =0 w3 = wy + ws. ,

Setting wiy=w,=1 and w; =2, a single-threshold realiza-
tion is
W, T) = (1,1, 2; 2.5). (10)
III. DETERMINATION OF COMPATIBLE
WEIGHT EXPRESSIONS

I't has been observed in the previous section that the
fact that excitations of TRUE and FALSE vertices are
different can be utilized to partition the set of distinct
simple linear weight expressions {G(w)} into two sub-
sets. The subset {G(w) }; contains all elements that are
constrained to be inequalities.

Let us call the other subset the residual subset
{G(w) } = of weight expressions.

In Example 2, the two weight expressions in (9),

Gl(w) = W1 — W
and
Gz(‘w) = W3 — W1 — Wy

constitute the residual subset {G(w)}# and have been
converted into equalities, as they are not contradictory
and are independent of each other. However, this is a
simple example and, in general, the number of elements
in {Gw)}r=]|{Gw)}r|>n.

A systematic method is, therefore, required to select
only those weight expressions from {G(w) } & that may
be equated to zero giving us the required weight rela-
tions useful for synthesis. An approach towards this end
is given below.

Two weight expressions G.(w) and G,(w)&E {G(w)}R
are said to be patrwise compatible if both can be equated
to zero without contradicting each other. They are pair-
wise tncompatible otherwise. A set of simple weight
expressions {G(w) }'g {G(w)}R, each element of which
has been equated to zero, is completely compatible if no
linear combination results in a G;(w) such that G,(w)

€{Gw)}1, orif
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{Gi(w), Ga(w), - - -, Guw)} S {Gw)}r
constitutes a completely compatible, or CC. Then
a1Gi(®) + 6:Ga(w) + - - - aGi(w) = Gi(w) & {Gw)}:

for all values of ¢, =1, 2, - - -, &, and ¢;#0.

A set of simple weight expressions {Gl(w), Go(w),
++ +, Gy(w) } is linearly independent if ¢;Gy(w) +¢2Ga(w)
+ - - +aGr(w) =0 implies ¢;=0 for =1, 2, - - -, k.
Gi(w), G(w)E{Gw)}r imply Gyw)E{Gw)|r if
a1G1(w) +¢6:Ga(w) = Gi(w) for ¢y, ¢y arbitrary integers. If
o, ¢e=*1, Gi(w) and Gy(w) are said to simply imply
Ga(‘ZU)

Consider two distinct simple weight expressions
G.(w), Gb(w)G{G(w)}R, and equate each of them to
zero such that we have two independent weight relations

Go(w) =0 Gy(w) = 0. (11)
Now, let us generate H(w) such that
H(w) = pGo(w) + ¢Go(w) (12)

where p and ¢ are arbitrary integers.

Theorem 1: Any two arbitrary simple weight expres-
sions G.(w), G,(w)E {G(w) } » equated to zero are pair-
wise incompatible if

1/r H@w) € {Gw)}:

where 7 is any integer and 7 #0.
Proof : Let there be at least one Hy(w) such that

Hi(w) = prGa(w) + ¢:Go(w)

= rG;i(w),

and Gi(w)E {G(w)}1, i.e., Gi(w) 0. Therefore, H(w)
#0. But this is a contradiction since G.(w) and G,(w)
are both assumed to be zero. Thus G,(w) and G,(w) both

cannot be equated to zero. Hence, they are pairwise
incompatible. ' Q.E.D.

(p, ¢, r) are integers

Example

Consider U,=[1 00 1] and U,=[1 0 0 —1]. Here,
U+Uy=[2 00 0] and U.—U,=[0 0 0 2]. Thus
1[U.+U,]- W and [U.— U,]- WE {G(w) }. The simple
weight expressions G,(w), Gs(w)E {G(w) | » are said to
be simply pairwise incompatible, designated G.(w)
~Gy(w), if p=g=r=+1and Hw)E {Gw)}.

Let us consider two arbitrary U vectors U, and U,.
The distribution of 1, 0, and —1 among these two
vectors is as follows.

Distribution 1: A 0 in one corresponds to a 0 in the
other.

Distribution 2: A1 or —1 in one corresponds to a 1 or
a —1 in the other, respectively.

Distribution 3: A 0 in one corresponds toa 1 ora —1
in the other.

Distribution 4: A 1 in one corresponds to a —1 in
the other.

Distributions 1 and 2 constitute the identical part of
the two vectors and Distribution 4 constitutes the com-
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plementary part. From the structure of the U vectors
we have the following theorem.

Theorem 2: The weighted sum of two simple linear
expressions

a

Us

if the distribution of {1, 0, —1} in U, and U, satisfy at
least Distribution 1, 3, and 4 simultaneously.
Proof :

mw=bd[ ]W&WM} (13)

p and ¢ are arbitrary in-

mw=ud[2lwu

= [p ¢] (Distribution 1, Distribution 3, Distribu-

tegers

tion 4) - WT
=[(p+qor —(p+ ¢, (rgor £p), (p — ¢ or
(¢ — p)]-wr.

For p, ¢>1,
H(w) = [+k +porg +l], E>1,1=0,1. (14)

Thus H(w) € { G(w) }. Distribution 1 contains all zeros
and does not affect the status of H(w).

Corollary 1: 3H(w)=%[U.+ Uy]- W€ {G(w)} if the
distribution of 1, 0, —1 in U, and U, is Distribution 2
and 4 (or Distributions 2, 4, and 1).

Proof: Now, U, + U= 0, - - -,
:t2,-~-,0,-~-].

Corollary 2: Distribution 3 only can occur singularly,
and then, H(w) = (U, + U;) € {G(w) }.

Proof : If Distribution 2 only exists, U,= U,. If Dis-
tribution 4 only exists, U,~+ U, =0 and U, and U, are not
distinct. Occurrence of Distribution 1 only implies
Ua = Ub =0.

+2,--,0, -

IV. THE ALGORITHM

The purpose of the proposed algorithm is to find a set
or sets of simple weight expressions (SWE’s) each of
which can be equated to zero without contradictions
or redundancy. This results in sets of relations between
the weights of the MTTE that are then utilized for
optimal realization. The fact that testing for complete
compatibility involves generating H(w)'s with |p[,
|¢| >1, and mutual incompatibility between three or
more expressions, we confine our processing to simple
pairwise compatibility only. This together with the use
of the simple implication relations (SIR) results in sets
of almost compatible weight expressions. The corre-
sponding U vectors constituting the almost compatible
weight expressions or maximal set of simple pairwise
compatibles are now subjected to elementary row opera-
tions to remove any residual redundancy. Finally we
get: 1) A<n—1 rows, each with two nonzero entries,
one of which is unity, the rest of the entries are zeros;
2) some rows with all zeros (corresponding to any linear
dependency left unremoved); 3) some rows with only
entries in the ¢th column ¢ <# (this indicates incompati-
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bility if the function is not independent of the 4th
variable).

If only 1) is present, the corresponding weight expres-
sions are each equated to zero and they constitute a set
of binary weight relations. If 1) and 2) are present, the
all-zero rows of 2) are ignored and the solution is ob-
tained from 1). If the set of rows of 3) is also present and
the function is not independent of the ith variable, all
possible lower order subsets of the Z<#—1 binary
weight relations are investigated for compatibility start-
ing with the highest order.

The first step of the algorithm is to determine the set
{G(w) } of SWE’s constrained to be inequalities by the
specified switching function. The complementary subset
{G(w)}r is next determined. Simple pairwise incom-
patibility and SIR’s between SWE'’s using Theorem 2
and its corollaries are then established. These are then
used [8] to determine the maximal subset of simple
pairwise compatibles (MSPC) of SWE’s. The SIR’s
of the form

di+ 4; = + A (15)

where A,;, A;, and 4, are SWE'’s, are next utilized to
remove any redundant weight relations from the
MSPC’s. Thus in an MSPC, if 4., 4;, and 4, occur
simultaneously and if they satisfy (15), any one of them,
say A, is removed. All the MSPC'’s are thus tested with
all the SIR’s. If, however, an MSPC contains only two
SWE's 4, 4;, say of a relation as (15), they are replaced
by the third, say 4, and simple pairwise incompatibility
between A; and each of the remaining elements of the
MSPC is tested using the simple pairwise incompati-
bility relations. Reduced MSPC’s are thus generated
whenever A4; is simple pairwise incompatible with some
element of the original MSPC. In each of these reduced
MSPC's, Ay is finally replaced by 4, and A4; wherever
Ay, occurs. The [U] submatrices corresponding to these
MSPC’s are then subjected to row operations as indi-
cated earlier.

Once the set of binary weight relations is established,
the smallest weight in each case is put equal to unity
and the weight vector W is obtained. The threshold
vector T for each W is realized by evaluating the excita-
tion at each vertex and noting their boundaries at the
TRUE and FALSE vertices.

The following two minimality criteria are now con-
sidered (any other minimality criteria can be used):
1) k, the number of thresholds is a minimum; 2)
S= >, le is a minimum; and the (W, T) or sets of
them that satisfy 1) and 2) are selected. The algorithm
for the procedure mentioned above is given in Fig. 1.

V. A NUMERICAL REPRESENTATION OF
SiMPLE WEIGHT EXPRESSIONS

As we have seen in the previous sections, a first step
towards synthesis is to compare the excitations of each
of the TRUE/FALSE vertices with each of the FALSE/TRUE
vertices. This step consists of a possible maximum of

917

2%»=0 individual comparisons.! To simplify this process,
the following numerical approach is found very useful.
Let us consider a set of weights

wi=3"% i=1,2 -, 0 (16)
The fact that in this system
w = 2(Wip1 + Wige + - - Fwl) + 1, i<

or

w; — (wi+1+wi+2+ e +wn)
= (Wip1 + wiga + - - -+ w,) + 1

makes it possible to generate all possible simple expres-
sions, no two of which are of identical value. Also,
>r . w, is minimum.

Thus we first transform the specified vertices from the
familiar decimal number representation into the number
system mentioned above. The two sets of numbers cor-
responding to the TRUE and FALSE vertices are sub-
tracted one from each of the rest. The magnitude of the
numbers generated corresponds to the inequalities
{G(w) }1. From the set of successive numbers 1, 2, + - -,
N=(3"—1)/2, the numbers corresponding to {G(w) }[
are removed, leaving behind the set {G(w) } .

VI. AN EXAMPLE OF SYNTHESIS

To clarify the ideas presented so far we introduce the
following four-variable problem:

F(x1, %0, 2, 00) = 9.1,2,3,5,7,9,15.

Using w; =27, w, =9, ws=3, and w,=1, we write the ex-
citations at the TRUE vertices E(X); and excitations at
the FALSE vertices E(X), as follows:

{E(X):} = 20 1,3,4,10,13, 28,40
and
TE(X)o} = 250,9,12,27, 30, 31, 36, 37, 39.

Here, N=(3¢—1)/2=40.

The integers 1 to 40 are listed in Fig. 2, and those that
correspond to the magnitude of difference of the excita-
tions E(X); and E(X), are crossed. For example, con-
sider E(X);=4 and all the E(X),. The magnitude of
differences 0, 5, 8, 23, 26, 27, 32, 33, 35 are crossed. If a
number is crossed once, it need not be crossed again.
The result of this step is given in Fig. 2.

The U vectors corresponding to the numbers not
crossed in the list given in Fig. 2 are shown in Table I;
they are numbered as 4, B, etc. The results of compari-
son of the U vectors are given in Table II.

Using the pairwise incompatibility relations of Table
I1, the following maximal simple pairwise compatibles
are obtained: 1) BDEF; 2) DEG; 3) ABD; 4) ADG;

1 Let p be the number of TRUE vertices. Then for a completely
specified function, the number of FALSE vertices ¢ =2"—p. The num-
ber of comparisons C=pg=p(2"—p). This becomes maximum for
p =271 and correspondingly Crp,, =220,
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Read F (;(’)

:

Form {6 ) 1, ) ¢

1

Select a pair of G(w)'s|
6, )., E{cn ] o

Simple
pairwise
incompatible?

Ly List of

simple pairwise
incompatibles”

List of
SIR's

Read I'l and Lz

1
Find MSPC's and_list

corresponding [U]

Find sets of binary
* weight relations

Do elementary row

operations on [U] ) ;

Fina {W, T}

Any

row ofL ]
reduced LU
cont#in all zeros’ Delete row

- -
Select W, T

i

Read minimality
criterion

satisfies
minimality criterion?

Select
maximal subse
of (U]and call

independent

of Xy ?
it new [U]
AllW, T testea?
[ vy = o0 —,
(b) (c)
Fig. 1.

MTTE synthesis algorithm. (Letters with arrows above them in figure appear as boldface letters in text.)
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39

Fig. 2. Comparison of {E(X)} and {E(X)e} of a four-variable
“function. (Letterswith arrows above them in figure appear as bold-

face letters in text.)

TABLE I
U VECTORS OF EXAMPLE

TABLE. II1
LisT oF (W, T) AND THE CORRESPONDING k£ AND S VALUES

27 9 3 1
€] 0 1 -1 1 A4
(12) 0 1 1 0 B
(15) 1 -1 -1 0 C
(22) 1 -1 1 1 D
(25) 1 0 -1 1 E
(37) 1 1 0 1 F
(39) 1 1 1 0 G
TABLE II

List oF SIMPLE PAIRWISE INCOMPATIBLES AND
SIMPLE IMPLICATION RELATIONS

Incompatibles Linear Dependencies

Subsets k =Number
of W = (w;, W2, W3, Wa) of

{G@)}r T=(Ty, T, Tk Thresholds S =Y i, |w]

DEG (-3,2;1,4) 3 10
(3.5,1.5,0.5)

ABD (-4, —-1,1,2) 3 8
0.5, —1.5, =2.5)

ADG (—4,1,3,2) 5 10
4.5,3.5,1.5, —1.5, —=2.5)

CDF (=3, —-1,-2,4) 3 10
0.5, —1.5, —2.5)

ACD (=4, —3,—-1, =2) 5 10
0.5, —0.5, —2.5, =5.5, —6.5

BE® a) (1 —-332) 6 9

5.5,4.5,3.5,1.5, —0.5, —1.5

b) 2 -331) 6 9

4.5,2.5,1.5,0.5, —1.5, —2.§

A~ (E, F)

B~(C, G) B+E=F
C~(E, G)

F(G) G—C=2B

5) CDF; and 6) ACD. Checking the MSPC’s with the
second column of Table II, it is observed that B, E,
and F occur in MSPC1. Hence F is removed.

In the set BDE, B and E are now replaced by F, but
as F is compatible with D (there is no pairwise incom-
patibility relation between D and F), the set BDE can
now be used to find relations between weights.

The row operations on BDE are indicated below:

wp W2
Bro 1 1 0
Di1t—-1 1 0

ELl 0-1 1

w3 Wy

1 0-1 1 1 0-1 1
—-{0 1 1 0j—f0 1 1
1 -1 2 0 0 0 3 0

[e=]

Remembering that all the weight expressions B, D,
and E are equated to zero and observing that the last
row of the transformed U matrix corresponds to a multi-
ple of an inequality, it is concluded that B, D, and E
are not compatible. Thus subsets of B, D, and E are to
be investigated for compatibility and weight relations.
For the present we consider the other pairwise compati-
bles and will return to this subset afterwards.

Results of row operations on the second MSPC,
DEG, are given as follows:

» Of the three possible 2’s combination of the elements of BDE,
i.e., BD, DE is included in sets ABD and DEG, respectively. Of the
many choices for the weights in BE, only those with minimum S are
included in this table.

W1 Wy W3 Wy
Dri—-1 1 1 1t 0-1 1
Ell 0-1 1|—-j0 1 2 —1
GLt 1 1 0 0 1-2 0
1 0—-1 1 1 0 0 32
—-{0 1t 2—-1]|—>0 1 0 -3
0 1 —4 1 0 0 1 -1

Remembering each of D, E, and G are equalities,
we have the following binary weight relations: 1) w
= —3w,; 2) wy=2%ws; and 3) wsy=}ws For integral
weight values, w, is chosen equal to 4. Thus the weight
vector W=(—3, 2, 1, 4). The corresponding threshold
vector T can easily be obtained by constructing numbers
with these weights and finding the boundaries of TRUE
and FALSE regions. Here T'=(3-5, 1-5, -5). For this
solution #=3 and S=10. Here w; could have been
chosen as —4, but the values of £ and S would remain
unchanged. The results of the other pairwise compati-
bles and the first set BDE are shown in Table II1. From
Table I11, the desired solution that satisfies £ =min and
S =min corresponds to the set 4 BD and the solution is

W, T=(—4,—1,1,2) (0.5, =15, =2.5).

VII. CONCLUSION

A different approach towards multithreshold thresh-
old element synthesis is presented. The method utilizes
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the simple fact that excitations at TRUE and FALSE
vertices are not identical. Of course, the comparisons
that have to be performed are large in number, but the
fact that the technique is systematic makes it conve-
nient for computer programming. A program for solving
a six-variable problem is underway.
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Digital Multiplexing Analog Signals
W. D. LITTLE anp A. C. CAPEL

Abstract—A method is presented that combines the multiplexing
and A/D function to eliminate analog multiplexing switches.

Index Terms—Analog, A/D converter, comparator, digital,
multiplexer.

The conventional system for sampling a number of analog signals
with a single A/D converter is shown in Fig. 1. One analog input at a
time is switched through analog switches to the A/D converter under
control of gating signals G;. Often, FET switches are used as the
switching elements.

The proposed scheme is shown in Fig. 2. Rather than using a
single comparator within the A/D converter, a comparator is used
with each input. The digital error signal of the input to be sampled is
routed to the A/D logic by applying the appropriate gating signal G;.

For unbalanced inputs as shown in the figures, 7 analog switches
plus one comparator are traded for n comparators. For balanced
inputs, # 3-input comparators could replace 2n analog switches and a
2-input comparator. With the conventional method, for some applica-
tions it is possible to use a single amplifier between the multiplexer
and the A/D converter if amplification is required. With the digital
multiplexing method, however, an amplifier would be required for
each channel. The proposed scheme, on the other hand, completely
eliminates analog switches and their associated limitations such as
settling time, offset, and drift. If the comparators used in the pro-
posed scheme are the same as the comparator used in the conventional
system, the proposed system will give improved performance because
the switches have been eliminated. If economy rather than per-
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Fig. 1. Conventional multiplexor A/D system.
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Fig. 2. Digital multiplexor for analog inputs.

formance is of concern, the use of lower performance comparators
than the comparator in the conventional system will result in equal
performance of the two systems. Overall cost performance will, of
course, depend upon switch comparator and A/D logic technology.
The proposed scheme could be the preferred approach for some
applications.
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