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ir=0# i / j=( ) N2 L -T NwAa(B) i=1 T - Na(Lmin)
then the average row a weight of the extended matrix is M M M

Wr =,Ni + Z. (K + 1) From this we conclude that

N2 + Z Na(Lmin)

Treating this as a function of the number of rows and LM
differentiating, we get Hence B contains at least one MXL submatrix witlh

2(K + 1) - N1 average fractional a weiglht less than or equal to 5a, and
Wr-= (N- 2 the proof then follows immediately from Lemmnas 1

and 6.
From this we see that the average row a weight increases REFERENCES
more rapidly when we add the first few rows of a weight [11 S. J. Golomb, Shift Register Sequences. San Francisco: Holden-
K+ 1 and less rapidly as wve approach matrix A K+1. The Day, 1967.
resullt then follows since any M XL matrix is intermledi- [2] J. L. Massey, "Some algebraic and distance properties of convolu-

tional codes," in Error Correcting Codes, H. B. Mann, Ed. New
ate between AK and AK+1 for some K. York: Wiley, 1968.

Lemma 6: [3] W. WV. Peterson, Error Correcting Codes. Cambridge, Mass.:
M.I.T. Press, 1961, appendix A.

K+o'L
Z (D .< 2LH(K+ /L) for K < [L/3] and L > 2.
i=0

Proof: It is well known that this bound is true for An Approach for the Synthesis of Multithreshold
conventional summations, i.e., a = 0, so we need only Threshold Elements
show that it is true for O <o < 1 wlhere the fractional C. L. SHENG, SENIOR MEMBER, IEEE, AND

summation is as defined above. To this end we consider P. K. SINHA ROY, MEMBER, IEEE

the riglht and left sides of the inequality to be functions Abstract-A new approach for the realization of multithreshold
of u. Between the points K and K+ 1, E%K'+a (L) has the threshold elements is presented. The procedure is based on the fact

constant slope ('+,) and 2 LH(K+ef/L) has slope that the excitations at contradictory vertices of the switching function
must be unequal. The weights of the multithreshold element, in

L- (K +a-) general, satisfy simple relations of the form U. W= 0, where
L- 2LH(K±+r/L) *(log, 2) . 1og - U=(ul, U2, , un) and W= (wI, W2, ,1) such that vi(elog ;K+ -/ UE(1u0,-, i1 2, n, and WEIn.

Comparison of the excitations E(Xi) = W. Xi and E(Xj) = W- Xj
L +j can be rewritten as (L) *L-K/K+1 and we ob- at TRUE and FALSE vertices Xi and Xj, respectively, for all specified(K K vertices result in some inequalities of the form U W5'_0. Subsets of
serve that in th-e area of interest, K < [L/31 and L > 2, the remaining set of weight expressions U W that are compatible are

the function 2LH(K+,rIL) has the greater slope. Thus it is then determined, i.e., no linear combination of some or all of these

not possible for the value of LzK+o (L) to overtake the expressions results in an expression Ui, W such that Ui Wf O0 and
independent of each other. Each expression of each of these subsets

value of 2LH(K+c IL) between the points K and K+1. is then equated to zero, and simple relations between weights are

We are now able to prove the theorem. established. These are then used to find the weights vectors Ws.

Proof: We first show that a set of Ml distinct output The threshold vector T for each W is next established. From the set
of weight-threshold vectors (W, T) the desired solution is deter-

sequences, each of which has fractional a weight not mined by some minimality criterion. An example has been worked
greater than ba, must have some set of L consecutive - out by hand and an algorithm is given for systematic synthesis pro-

positions in whiclh the fractional a weight of the cor- cedure.
The method is applicable directly to the truth table or decimal

responding AM XL matrix is less than 5&,. Let B be the number representation of the switching function, and a large number

MvfX T matrix whose rows are periods of the output se- of permutation and negation of input variables [1], [2] is not neces-

quences of fractional a weighlt a,, or less. We consider sary for finding the solution. Such processing of the switching func-
tion as decomposition and reconstruction [3] is also not necessary.

MXL submatrices of consecutive columns, wlhich we The method, however, involves some amount of computation and

call frames, and we note that there are T distinct frames efforts are in progress to program the algorithm.
since 13 may he considered to wrap around in cylinidrical Index Terms-Compatibility, multithreshold threshold elements,
fashion. \Ve letNa(L- ) denote the a weigh-tof the ith simple implication, weight expressions and inequalities.
frame and Na(B) the a weighlt of B. Then, since each

bjof B appears in exactly L frames, we have Manuscript received December 3, 1971; revised January 31, 1972.
' ~~~~~~Thiswork was supported in part by the National Research Council

T of Canada under Grant A-1690.
L. Na(B) = v A(L).\ C. L. Sheng was with the Department of Electrical Engineering,
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Ob-serving that Na(B)/ ill is thle average rowT a weighlt of P. K. Sinha Roy was with the Department of Electrical Engineer-
B and denoting thle a wveighlt of thle framle w=ith thle least inlg, Unliversity of Ottawra, Ottawa, Ont., Canada. Hle is now wvith theDepartmlenlt of Electronics anld Telecommulnication, Bengal Ebngi-
number of a's by Na(Lmin), we obtain neering College, Howrah, W\est Bengal, Indial.
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I. INTRODUCTION The synthesis procedure presented by Haring and
A multithreshold threshold element (MTTE) is de- Diephuis [3] uses a decomposition and reconstruction

fined by its weight-threshold vector (W, T), where the technique to realize the given function.
weight vector W= (w1, w2, , wn) consists of an This note is a generalization and extension of theorderedrsetofn real numbers, called w , c work done by Paldi and Sheng [7], and it presents a

responding to the n input variables ihtso, 1 } technique for determining sets of independent relations
i' 1n o ubetween the weights of the MTTE that do not contra-s 1, 2, ,n, constituting thae input vector X

= (X, X2, x) of the switching function F(X) re- dict the separation of the excitation of TRUE and FALSE
alized by the MTTE; and the threshold vector T vertices. A set of weight vectors is then determined
= (T1, T2, Tk) is an ordered set of k real numbers, using minimal integral values, and the threshold vectors

called thresholds.Theinearwed sum T for each of them are computed. The weight-thresholdcalled thresholds. Thne linear weighteds sum
vector (W, T) that satisfies the minimality criteria is

n then selected.
W.X wixi E WThe process involves some amount of computation,

but is systematic and no preprocessing like decomposi-
is called the excitation and is represented as E(X). The tion and reconstruction is necessary.
decision process of the MITTE can be expressed as
follows: II. SIMPLE WEIGHT EXPRESSIONS AND

WEIGHT RELATIONS
F(X) =, if E(X) > T, Let

or if T2j > E(X) > T2j+1 U = (i1, U2, ' ', un) E {0, 1, I1}n
F(X) = z, otherwise, where z is the complement of z

and zC {0,1} and
G(w)_ UW (1)

j = 1, 2, 3, be a simple linear expression of the weights of a multi-
Tj E { Tb, T2, ..., 4T} threshold threshold element. Such equalities or inequal-
Tj > Tj11. ities as

A number of approaches have been made recently for G(w) = 0
the synthesis of multithreshold threshold elements. or
Haring [ 1 ] developed two algorithms, the first based on G(w) 5-

O (2)the "run-measure" minimization [4] by permuting
and/or negating the weights assigned to the variables in are defined as simple linear relations between the weights.
the truth table of the given switching function, and the It is obvious that complimentary simple weight ex-
second based on single-threshold realizability conditions pressions, i.e., weight expressions Ga(w) and Gb(w) that
of the component subfunctions into which the given satisfy
function is decomposed. The first algorithm requires n !2n Ga(w) + Gb(w) = (Ua + Ub) W = 6 W = 0
permutations and/or negations of the weights assigned
to variables to minimize the run measure of the given where 0 is the null vector, are not distinct in the sense
function. Even then a minimal solution with the smal- that they do not generate different simple weight rela-
lest number of thresholds and the minimum sum of tions. Thus if Ga(w) =0, Gb(w) =-Ga(w) =O; and if
magnitudes of weights is not guaranteed. The second Ga(w) 70, Gb(w) =G-,Ga(w) =0.
algorithm gives a minimal solution, but due to diffi- Two simple weiglht expressions are called distinct if
culties of testing and decomposition it is not useful for they give rise to different simple weight relations.
k>2 and n>6. The tabular method of Haring and Weight expressions that have coefficients different from
Ohori [5] is based on the Rademacher-Walsh coeffi- {1, 0, - 1 are called complex weight expressions.
cients of the function and its classification into one of For an n-variable problem, the total number of non-
221 equivalence classes (for a four-variable function). trivial excitations is (2n-1). The set of vectors { U} is
The method is applicable for n<4 and minimality is not of order 3n. Eliminating thle null vector 0 and considering
guaranteed. The algorithml developed by Necula [2] that for every vector Ua [{ U} -0] there is another
uses the run-measure minimization approach1, but takes vector Ub6 [{t U} -0)] suchI that Ua #t Ub and Ua ± Ub =0;
symmetry conditions into consideration and shows that the total number of distinct simple expressions reduces to
only n!2"' tests are sufficient. Ai\ow and Eu [6] based
their approachl for MTTE synthesis on resolving con- = _____1)(3tradictory pairs of vertices by using incremental xveights. 2
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Example 1 From the comparison of excitations we obtain the fol-
All the distinct simple weight expressions for a three- lowing inequalities:

variable problem can be expressed by the following col- WI 5& 0 Wl + W2 7& 0 wl -W2-W3 0
umn matrix:

W2 X 0 W'1+W3 X 0 W2- Wl -W3 7 0
0 01- ~~w~

i-w~.0 W-i-s~

-0 0 1- W3 i£ 0 W2 + W3 5 0 Wl + W2+ W3i 0. (8)
0 1 0

W- W3 # 0
1 0 0

W 2 -W3 0

0 1 1
1 0 1 This leaves us with only (13 - 11) = 2 simple weight ex-

pressions that we may equate to zero giving us the fol-
1 1 0 wl- lowing equality relations:

[u].w= 0 1 -1 w2 (4) -w20
o-1 or (9)

W3 -Wl-ZW2 = ° W'3 =WI + W2-

1 10 1 -1 -1 ~~~~SettingW1 =W2 = 1 and W3 = 2, a single-threshold realiza-
tion iS

(W, T) = (1, 1, 2; 2.5). (10)1 1 -1

_1 1 1 I_II . DETERMINATION OF COMPATIBLE

In (4), each dot product U. W corresponds to a simple WEIGHT EXPRESSIONS
distinct weight expression. It has been observed in the previous section that the
The distinction between an excitation E(X) at a fact that excitations of TRUE and FALSE vertices are

vertex X and a simple weight expression G(w) is that different can be utilized to partition the set of distinct
while E(X) is a linear combination of the weights with simple linear weight expressions {G(w) } into two sub-
coefficients (1, 0), the simple weight expression G(w) is sets. The subset {G(w) }I contains all elements that are
a linear combination of the weights with coefficients constrained to be inequalities.
1, 0, and -1. Thus Let us call the other subset the residual subset

E G(w) } R of weight expressions.
In Example 2, the two weight expressions in (9),

Now, consider a TRUE vertex Xi and a set of FALSE Gl(w) -

vertices Xjl, X,2, , XjS. Since the excitations of a
TRUE and a FALSE vertex must be different, we have and

E(Xi) F4 E(Xjk), k = 1,2, ...
I s (6) G2(w) = W3-W -W2

constitute the residual subset { G(w) } p and have been
E(Xi) - E(Xjk) = Gk(w) $ 0. (7) converted into equalities, as they are not contradictory

Thus corresponding to the TRUE vertex Xi and the and are independent of each other. However, this is a

FALSE vertices Xjl, X2, . Xj,we have s distinc simple example and, in general, the number of elements

simple weight relations (inequalities) of the form (7). in G(w) } R = { G(w) } R >>n.
A systematic method is, therefore, required to select

only those weight expressions from {G(w) } R that maytices, then inequalities of the form (7) can be generated be equated to zero giving us the required weight rela-
for each of r TRUE.vertices and all the S FALSE vertices, tions useful for synthesis. An approach towards this endbut not all r s inequalities are distinct. Thus the switch- is given below.
ing function being realized constrains a set of q<r.s

simple weigt e n io i. TTwo weight expressions Ga(w) and Gb(W) E{ G(w) } R

us wth N-qsimle eigt exresion, soe o al are said to be pairwise compatible if both can be equated
' ~~~tozero without contradicting each other. They are pair-of whichmaybequatedto zero.wise i,ncompatible otherwise. A set of simple weight

Example 2 expressions { G(w) } 'C { G(w) } R, each element of which
has been equated to zero, is completely compatible if noConside thetree-varable eample:linear combination results in a G~(w) such that Gi(w)

F(X)3-=3, 5, 7. EC{G(w)}I, or if
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Gi(w), G2(w), , Gw(w)} R plementary part. From the structure of the U vectors

constitutes a completely compatible, or CC. Then we have the following theorem.
Theorem 2: The weighted sum of two simple linear

c1Gl(w) + c2G2(W) + ckGk(w) = Gi(w) f{G(w)}r expressions

for all values of ci, i=1, 2, , k, and ci# O. FUal
A set of simple weight expressions {Gi(w), G2(w), H(w) = [p q] LI WT {G(w)1 (13)

GM(w) } is linearly independent if c1Gl(w) +c2G2(w)
+ +ckGk(w) =0 implies ci = 0 for i = 1, 2, , k. if the distribution of { 1, 0, -1} in Ua and Ub satisfy at
G1(w), G2(w)G {G(w) }R imply G3(w)CEG(w) }R if least Distribution 1, 3, and 4 simultaneously.
c1G1(w) +c2G2(w)= G3(w) for c1, C2 arbitrary integers. If Proof:
C1, C2= ±1, G1(w) and G2(w) are said to simply imply r.Ua- p and q are arbitrary in-
G3(w). H(w) = [p q]. WT.

Consider two distinct simple weight expressions L Ub] tegers
Ga(W), Gb(w)E G(w) R, and equate each of them to = [p q] (Distribution 1, Distribution 3, Distribu-
zero such that we have two independent weight relations tion 4)

Ga(w) = 0 Gb(w) = 0. (11) = [(p + q) or -(p + q), (±q or +p), (p - q) or

Now, let us generate H(w) such that (q - p)] WT.

H(w) =pGa(w) + qGb(W) (12) For p, q.1,

where p and q are arbitrary integers. H(w) = [± k, ± p or q, ±1], k > 1,)1 = 0, 1. (14)
Theorem 1: Any two arbitrary simple weight expres- Thus H(w) XG(w) }. Distribution 1 contains all zeros

sions Ga(w), GO(w) EE G(w) I R equated to zero are pair- and does not affect the status of H(w).
wise incompatible if Corollary 1: IH(w) = I [U, ± Ub] WTE{ G(w) } if the

1/r H(w) E {G(w) }' distribution of 1, 0, - 1 in Ua and Ub is Distribution 2
and 4 (or Distributions 2, 4, and 1).where r Is any Integer and r#0. Proof: Now, Ua±+ Ub= [0, , ±22, , 0,

Proof: Let there be at least one Hk(W) such that + 2Proof: O, ]
U ±

Hk(w) = PkGa(W) + qkGb(w) Corollary 2: Distribution 3 only can occur singularly,
= rGi(w), (p, q, r) are integers and then, H(w) = (U, ± Ub)E G(w) }.

Proof: If Distribution 2 only exists, Ua= Ub. If Dis-
and Gj(w) E G(w) }, i.e., Gi(w) ii#0. Therefore, Hk(w) tribution 4 only exists, Ua+ Ub =0 and U, and Ub are not
#0. But this is a contradiction since Ga(w) and Gb(w) distinct. Occurrence of Distribution 1 only implies
are both assumed to be zero. Thus Ga(w) and Gb(w) both Ua= Ub = .
cannot be equated to zero. Hence, they are pairwise
incompatible. Q.E.D. IV. THE ALGORITHM

The purpose of the proposed algorithm is to find a set
Example or sets of simple weight expressions (SWE's) each of

Consider Ua == [1 0 0 1] and Ub= [1 0 0 - 1]. Here, which can be equated to zero without contradictions
Ua+Ub= [2 0 0 0] and Ua-Ub= [O 0 0 2]. Thus or redundancy. This results in sets of relations between
[Ua+ Ub]. W and 2 [UL- Ub]- WEI {G(w) }. The simple the weights of the MTTE that are then utilized for

weight expressions Ga(W), Gb(w) {G(w) } R are said to optimal realization. The fact that testing for complete
be simply pairwise incompatible, designated Ga(W) compatibility involves generating H(w)'s with |P|,
Gb(w), if p= q=r=+ 1 and H(w)E {G(w) }I. IqI >1, and mutual incompatibility between three or
Let us consider two arbitrary U vectors U, and Ub. more expressions, we confine our processing to simple

The distribution of 1, 0, and - 1 among these two pairwise compatibility only. This together with the use
vectors is as follows. of the simple implication relations (SIR) results in sets

Distribution 1: A 0 in one corresponds to a 0 in the of almost compatible weight expressions. The corre-
other. sponding U vectors constituting the almost compatible
Distribution2: Al1or -l1inone corresponds to al1or weight expressions or maximal set of simple pairwise

a -1 in the other, respectively, compatibles are nowv subjected to elementary row opera-
Distribution 3: A 0 in one corresponds to a 1 or a -1 tions to remove any residual redundancy. Finally wve

in the other. get: 1) h.n- 1 rows, each wvith two nonzero entries,
Distribution 4: A 1 in one corresponds to a - 1 in one of which is unity, the rest of the entries are zeros;

the other. 2) some rows wvith all zeros (corresponding to any linear
Distributions 1 and 2 constitute the identical part of dependency left unremoved); 3) somle rows with only

the two vectors and Distribution 4 constitutes the com- entries in the ith column i.n (thlis indicates incompati-
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bility if the function is not independent of the ith 22(n-I) individual comparisons.' To simplify this process,
variable). the following numerical approach is found very useful.

If only 1) is present, the corresponding weight expres- Let us consider a set of weights
sions are each equated to zero and they constitute a set
of binary weight relations. If 1) and 2) are present, the = i 1, 2, . .n. (16)
all-zero rows of 2) are ignored and the solution is ob- The fact that in this system
tained from 1). If the set of rows of 3) is also present and
the function is not independent of the ith variable, all
possible lower order subsets of the h <n-1 binary or
weight relations are investigated for compatibility start- wi - (Wi±1 - Wi+2 + + Wn)
ing witlh the highest order.
The first step of the algorithm is to determine the set -(wi+ + Wi+2 + ±+ Wn) + 1
G(w) } r of SWE's constrained to be inequalities by the makes it possible to generate all possible simple expres-

specified switching function. The complementary subset sions, no two of which are of identical value. Also,
{ G(w) } R is next determined. Simple pairwise incom- En w is minimum.
patibility and SIR's between SWE's using Theorem 2 Thuswefirsttransformthespecifiedverticesfromthe
and its corollaries are then established. These are then familiar decimal number representation into the number
used [8] to determine the maximal subset of simple system mentioned above. The two sets of numbers cor-
pairwise compatibles (MSPC) of SWE's. The SIR's sysemntodabv.Tewoesofubrsc-
of the form responding to the TRUE and FALSE vertices are sub-

tracted one from each of the rest. The magnitude of the
Ai ± Aj = + Ak (15) numbers generated corresponds to the inequalities

G(w) } . From the set of successive numbers 1, 2,
where A , A , and Ak are SWE's, are next utilized to N= (3n-1)/2, the numbers corresponding to {G(w) }
remove any redundant weiglht relations from the are removed, leaving behind the set { G(w) } R
MSPC's. Thus in an M\ISPC, if Ai, Aj, and Ak occur
simultaneously and if they satisfy (15), any one of tlhem, VI. AN EXAMPLE OF SYNTHESIS
say Ak, is removed. All the MSPC's are thus tested with To clarify the ideas presented so far we introduce the
all the SIR's. If, however, an MISPC contains only two following four-variable problem:
SWE's A i, Aj, say of a relation as (15), they are replaced

F

by the third, say Ak, and simple pairwise incompatibility F(xi, x2, x3, X4) = E 1, 2, 3, 5,7, 9,15.
between Ak and each of the remaining elements of the Using WI=27, W2=9, w3=3, andW4=1,we write the ex-
MSPC is tested using the simple pairwise incompati- citations at the TRUE vertices E(X)1 and excitations atbility relations. Reduced MSPC's are thus generated theFALSEvertices E(X)o as follows:
whenever Ak is simple pairwise incompatible with some

element of the original MVJSPC. In each of these reduced {E(X)1} = E 1, 3, 4, 10, 13, 28, 40
?IISPC's, Ak is finally replaced by Ai and Aj wherever and
Ak occurs. The [U] submatrices corresponding to these
AISPC's are then subjected to row operations as indi- {E(X)o} = E 0, 9,12, 27, 30, 31, 36, 37, 39.
cated earlier.
Once thle set of binary wveighlt relations is established, Here, N= (34 1)72 =40.
thesmalesetweigtbinary veah t

c elase tionsp equablitohun The integers 1 to 40 are listed in Fig. 2, and those thatthe smallesightvectorcW isoae e threshol correspond to the magnitude of difference of the excita-

vectorThe forgteach W isrealizedobyainevaluai Thetrex tions E(X)1 and E(X)o are crossed. For example, con-vector T eachverte andbno tingtheiesiat sider E(X)1f=4 and all the E(X)o. The magnitude of

tRUE and FaLSEverties,
and noting theirboundariesatthedifferences 0, 5, 8, 23, 26, 27, 32, 33, 35 are crossed. If aTRUTE, and FALSE vertices.'''''

The following two minimality criteria are now con- number is crossed once, it need not be crossed again.
sidered (any otlher mininmality criteria can be used): The result of this step is given in Fig. 2.
1) k, the number of thresholds is a minimum; 2) The U vectors corresponding to the numbers not

u
n

X * i a m crossed in the list given in Fig. 2 are shown in Table I;s weh1veWi iS amse nimU and tthe (Wp T) or sets of a

tow tard syntheisf is todcompare thelexcitatonofeeacrihm 1Lhetpabe thenubere of TRUv,ertice.Thenforlt af compleel
ofo theTrUce/FALe verticesdwitheeachgofethe FALSE/TRU speifeofucinthe nubroUASvertices qr gie in Thelnum-

towads sntheis s tocompre te ecitaionsof ber oftcoparesoensmeC ofTRpE(vrtice.Thibe ome maxiu forleel
vertices. This step consists of a possible maximum of p=2n-' and correspondingly Cp,,X=22(n-1).
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Read P (x)

|Form IG (W); I#, (w)i R

Select a pair of G 'sr Gl()'tw2 (w) C fG (w)}R
rncompa; ble? n List

/ simple pairwise
\"1 C ' ~ ~~~inompatibles-

mplicati~~ ~ ~ egh rltin

ReadLiandL2~~ ~ ~ Fnd{W T

corresponding EU)~~~~ ~ AlW tstd?St

~~~~~ No

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~Fn Reaw1idL

1r

L~~~ ~ ~ ~ ~ Dlt o Select rel Tin

Dontleinnally rows1

1 i criterion

/wcontains\
4a1 zeroes except tLNo

th elemenH / aisfies\ -1

Fig.1. MTE sntheis agorihm. Lettrs wth arowsabov the in igur nappar asboldfacen lete s tite T.

< ;
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XZTX X y s~~~f9 7 ,t (,

xx12 v )4 15/ Y A 6

22 X 4 25 X Y 4 ' R

3f ;~41 4 / 9 37 4 39 *6

Fig. 2. Comparison of {E(X)1J and {E(X)o} of a four-variable
function. (Letters with arrows above them in figure appear as bold-
face letters in text.)

TABLE I TABLE III

U VECTORS OF EXAMPLE LIST OF (W, T) AND THE CORRESPONDING k AND S VALUES

27 9 3 1 Subsets k =Number
of W= (WI, W2,w3,w4) of

(7) 0 1 -1 1 A {G(w)}R T=(T1, T2, Tk) Thresholds S=EL.Iwd
(12) 0 1 1 0 B
(15) 1 -1 -1 0 C DEG (-3,2;1,4) 3 10
(22) 1 -1 1 1 D (3.5, 1.5, 0.5)
(25) 1 0 -1 1 E ABD (-4,-1,1, 2) 3 8
(37) 1 1 0 1 F (0.5, -1.5, -2.5)
(39) 1 1 1 0 G ADG (-4,1, 3,2) 5 10

___- (4.5, 3.5, 1.5, -1.5, -2.5)
CDF (-3, -1, -2, 4) 3 10

(0.5, -1.5, -2.5)
TABLE II ACD (-4, -3, -1, -2) 5 10

LIST OF SIMPLE PAIRWISE INCOMPATIBLES AND BEa 0.5, -05 -2.5, -5.5, -6.5 6 9
S1MPLE IMPLICATION RELATIONS BE a) (1 -3 32 6 9

5.5, 4.5, 3.5, 1.5, -0.5, -1.5
b) (2-331) 6 9

Incompatibles Linear Dependencies 4.5, 2.5, 1.5, 0.5, -1.5, -2.5

Ar-d(E, F) a Of the three possible 2's combination of the elements of BDE,
B-A'-(C, G) B+E=F i.e., BD, DE is included in sets ABD and DEG, respectively. Of the
C (E, G) many choices for the weights in BE, only those with minimum S are
F,-*, (G) G-C =2B included in this table.

5) CDF; and 6) ACD. Checking the TMISPC's with the Wi W2 W3 W4
and F occur inMSPC1. Hence F is removed. F~~1 0-1 Ii1 -I 1 -1 1second column of Table II, it is observed that B, E, D -1 1 1 1 1 0 1 1]

and F occur in '_\JSPC1. Hence F is removed. E I 0 -1 1 > 1 2 -1
In the set BDE, B and E are now replaced by F, but G I 1 1 oi Lo 1 -2 O0

as F is compatible with D (there is no pairwise incom- oi Lo
patibility relation between D and F), the set BDE can ri
now be used to find relations between weiglhts. > 1 2 -1 O 1 2

The row operations on BDE are indicated below: L 1 -4 1i L 1 --2

WI W2 W3 W4 Remembering each of D, E, and G are equalities,

B ro 1 I O- awe have the following binary weight relations: 1) w1
==-4W4; 2) W2=2W4; and 3) W3=4W4. For integral

E[y-1 -- 1] weight values, W4 is chosen equal to 4. Thus the weight
vector W= (-3, 2, 1, 4). The corresponding threshold

-1 O -1 i- -1 O -1 i- vector Tcan easilybeobtainedbyconstructingnumbers
I I

t 0 1 with these weights and finding the boundaries of TRUE

-
O
1

2 OiL0
)O 1 1 O and FALSE regions. Here T=(3.5, 1.5, .5). For this

Ll -1 2 O_ _LO O 3O00 solution k =3 and S=t10. Here W4 could have been
chosen as -4, but the values of k and S would remain

Remembering that all the weight expressions B, D, unchanged. The results of the other pairwise compati-
and F are equated to zero and observing that the last bles and thle first set BDE are show^n in Table III. From
row of thle transformed U matrix corresponds to a multi- Table III, the desired solution that satisfies k = min and
ple of an inequality, it is concluded that B, D, and F S=min corresponds to the set ARD and the solution is
are not compatible. Thus subsets of B, D, and F are toW,T=(4-,12) 0.-.525.
be investigated for comnpatibility and wreight relations.W T=(4-1,2) 0.,15,25.
For thle present xve consider the other pairwvise compati-VI.CNLSO
bles and wvill return to thlis subset afterwvards.VI.CNL'SO

Results of rowv operations on the second I\ISPC, A different approachl towards multithreshold thresh-
DEG, are given1 as folloxvs: old element synthesis is presented. The method utilizes
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Correspondence

Digital Multiplexing Analog Signals digtal
W. D. LITTLE AND A. C. CAPEL

Abstract-A method is presented that combines the multiplexing .g-c
and A/D function to eliminate analog multiplexing switches. GI

Index Terms-Analog, A/D converter, comparator, digital, analog G2
multiplexer. inputs

A

The conventional system for sampling a number of analog signals
with a single A/D converter is shown in Fig. 1. One analog input at a Gn
time is switched through analog switches to the A/D converter under Multiplexer
control of gating signals Gi. Often, FET switches are used as the Fig. 1. Conventional multiplexor A/D system.
switching elements.

The proposed scheme is shown in Fig. 2. Rather than using a
single comparator within the A/D converter, a comparator is used digital
with each input. The digital error signal of the input to be sampled is
routed to the A/D logic by applying the appropriate gating signal Gi.

For unbalanced inputs as shown in the figures, n analog switches analog
plus one comparator are traded for n comparators. For balanced inputs
inputs, n 3-input comparators could replace 2n analog switches and a G etc.
2-input comparator. With the conventional method, for some applica-
tions it is possible to use a single amplifier between the multiplexer
and the A/D converter if amplification is required. With the digital
multiplexing method, however, an amplifier would be required for
each channel. The proposed scheme, on the other hand, completely n
eliminates analog switches and their associated limitations such as analog feedback
settling time, offset, and drift. If the comparators used in the pro- Fig. 2. Digital multiplexor for analog inputs.
posed scheme are the same as the comparator used in the conventional
system, the proposed system will give improved performance because
the switches have been eliminated. If economy rather than per- formance is of concern, the use of lower performance comparators

than the comparator in the conventional system will result in equal
performance of the two systems. Overall cost performance will, of

Manuscript received August 4, 1971; revised December 17, 1971, and February course, depend upon switch comparator and A/D logic technology.24, 1972. The proposed scheme could he the preferred approach for someTbe authors are witb tbe Department of Electrical Engineering, University ofaplctos
Waterloo, Waterloo, Ont., Canada. plctos
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